(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
f(x) → s(x)
f(s(s(x))) → s(f(f(x)))
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
f(s(s(x))) →+ s(f(f(x)))
gives rise to a decreasing loop by considering the right hand sides subterm at position [0,0].
The pumping substitution is [x / s(s(x))].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
f(x) → s(x)
f(s(s(x))) → s(f(f(x)))
S is empty.
Rewrite Strategy: FULL
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
TRS:
Rules:
f(x) → s(x)
f(s(s(x))) → s(f(f(x)))
Types:
f :: s → s
s :: s → s
hole_s1_0 :: s
gen_s2_0 :: Nat → s
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
f
(8) Obligation:
TRS:
Rules:
f(
x) →
s(
x)
f(
s(
s(
x))) →
s(
f(
f(
x)))
Types:
f :: s → s
s :: s → s
hole_s1_0 :: s
gen_s2_0 :: Nat → s
Generator Equations:
gen_s2_0(0) ⇔ hole_s1_0
gen_s2_0(+(x, 1)) ⇔ s(gen_s2_0(x))
The following defined symbols remain to be analysed:
f
(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
f(
gen_s2_0(
+(
2,
*(
2,
n4_0)))) →
*3_0, rt ∈ Ω(n4
0)
Induction Base:
f(gen_s2_0(+(2, *(2, 0))))
Induction Step:
f(gen_s2_0(+(2, *(2, +(n4_0, 1))))) →RΩ(1)
s(f(f(gen_s2_0(+(2, *(2, n4_0)))))) →IH
s(f(*3_0))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(10) Complex Obligation (BEST)
(11) Obligation:
TRS:
Rules:
f(
x) →
s(
x)
f(
s(
s(
x))) →
s(
f(
f(
x)))
Types:
f :: s → s
s :: s → s
hole_s1_0 :: s
gen_s2_0 :: Nat → s
Lemmas:
f(gen_s2_0(+(2, *(2, n4_0)))) → *3_0, rt ∈ Ω(n40)
Generator Equations:
gen_s2_0(0) ⇔ hole_s1_0
gen_s2_0(+(x, 1)) ⇔ s(gen_s2_0(x))
No more defined symbols left to analyse.
(12) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
f(gen_s2_0(+(2, *(2, n4_0)))) → *3_0, rt ∈ Ω(n40)
(13) BOUNDS(n^1, INF)
(14) Obligation:
TRS:
Rules:
f(
x) →
s(
x)
f(
s(
s(
x))) →
s(
f(
f(
x)))
Types:
f :: s → s
s :: s → s
hole_s1_0 :: s
gen_s2_0 :: Nat → s
Lemmas:
f(gen_s2_0(+(2, *(2, n4_0)))) → *3_0, rt ∈ Ω(n40)
Generator Equations:
gen_s2_0(0) ⇔ hole_s1_0
gen_s2_0(+(x, 1)) ⇔ s(gen_s2_0(x))
No more defined symbols left to analyse.
(15) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
f(gen_s2_0(+(2, *(2, n4_0)))) → *3_0, rt ∈ Ω(n40)
(16) BOUNDS(n^1, INF)